Our Heritage

For generations, the artesian spring water flowing from the Oak Creek Canyon of Sedona has been prized not only for its purity, but also for its mystical healing properties. Formed by rain and snowfall over hundreds of years, and naturally filtered through the rocks of the canyon, the spring water is thought to be truly sacred. Untouched by man and unquestionably superior, its purity can restore and sustain you.

Used for generations for irrigation by Native Americans and cultivated by settlers in 1875, Purely Sedona Artesian Spring Water originates from a registered and protected artesian spring in Oak Creek Canyon in Sedona. Oak Creek Canyon is a sacred river gorge that runs along the Mogollon Rim in Northern Arizona. From the spectacular rain storms that bring life to the region, to the million delicate waterfalls that ultimately wind their way down to the canyon, the water that emerges is naturally purified, yet retains the trace minerals and electrolytes unique to this water that set it apart from all others.

Oak Creek Canyon is thought to be at the heart of a highly-active region of energy vortexes – mysterious, funnel-shaped energy anomalies that have been said to possess healing and energizing attributes. Together with the breathtaking scenery and well-preserved nature, these vortexes have helped turn Sedona into one of the premier destinations for healing, spirituality and meditation. The energy emerging from the four main vortexes in Sedona has been said to resonate and strengthen the inner being.

Water Analysis Report

A distinctive blend of minerals contribute to the legendary taste of Purely Sedona Artesian Spring Water. The mineral content of water, as measured in a laboratory, forms a fingerprint or profile from the minerals present. Each constituent mineral contributes to the taste and character of the water, making it unique from any other waters. The basic composition of our
water is unchanged during the bottling process, so you can enjoy its clean, crisp taste and natural goodness.

Below is a simple breakdown of the minerals in Purely Sedona Artesian Spring Water, for you to see why you can taste the energy and restorative sustenance of this water in every bottle. All values are provided in milligrams per liter (mg/l 0 unless otherwise indicated.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Purely Sedona Artesian Spring Water</th>
<th>FDA Standard of Quality (SOQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Minerals and Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>27</td>
<td>NR</td>
</tr>
<tr>
<td>Magnesium</td>
<td>13.00</td>
<td>NR</td>
</tr>
<tr>
<td>Sodium</td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td>Potassium</td>
<td>ND</td>
<td>NR</td>
</tr>
<tr>
<td>Bicarbonate Alkalinity</td>
<td>130</td>
<td>NR</td>
</tr>
<tr>
<td>Chlorides</td>
<td>2.4</td>
<td>250</td>
</tr>
<tr>
<td>Sulfate</td>
<td>5</td>
<td>250.0</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ND</td>
<td>2.0</td>
</tr>
<tr>
<td>Silica</td>
<td>16</td>
<td>NR</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>6.5 - 8.5</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>160</td>
<td>500</td>
</tr>
<tr>
<td>Copper</td>
<td>ND</td>
<td>4.0</td>
</tr>
<tr>
<td>Lead</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>ND</td>
<td>= Not Detected, absent or present at less than testing method detection level</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>= Not Regulated by State or Federal Authorities</td>
<td></td>
</tr>
<tr>
<td>mg/L</td>
<td>= milligram (1/1,000 of a gram) per liter = ppm = parts per million</td>
<td></td>
</tr>
</tbody>
</table>

Quality Through-out the Process

Each load of Purely Sedona Artesian Spring Water is tested as it enters our plant to ensure the quality from source to bottle. We further employ a multi-barrier treatment system that complies with all state and federal regulations.

This approach involves a carefully controlled disinfection and filtration process. The water is piped into an environmentally controlled cleanroom where bottle filling and capping take place; and is supported by continuous monitoring and testing. We screen annually for more than 170 possible contaminants, beyond what is required by the FDA. And since seeing is believing, our finished products are subjected to continuous spot checks. Each bottle is production coded so you can be assured you’re buying the freshest product possible.

Our continued success is also due to the knowledge and strength of the people producing your water. Our staff has over 90 years of pride and experience in food industry, and their single-minded drive for excellence and quality shines through every bottle.

This information below would be presented in the link to more water quality information:
Our Water

At Sedona Bottling Company, we are proud of the quality of our bottled drinking water products. Our Purely Sedona Artesian Spring Water and Purely Sedona Sparkling Artesian Spring Water meet or exceed all applicable bottled water standards for quality and safety at the federal and state level. The US Food and Drug Administration (FDA) regulates bottled water as a food. Sedona Bottled Water Company uses certified laboratories to perform extensive tests on its water sources and bottled water products to routinely monitor compliance with all applicable federal and state bottled water regulations. For more information about the Sedona Bottled Water Company brands, please visit www.purelysedona.com or www.sedonabottling.com or call 1-800-341-33796. You may also send inquiries to:

Sedona Bottling Company, 120 N. 57th Drive, Ste 1, Phoenix, AZ 85043

In addition to existing stringent regulatory standards, Sedona Bottled Water meets or exceeds all quality requirements for all of the industries associations. Additionally, we take pride in the fact that our bottled water production plants are routinely inspected by independent third-party organizations. These plant inspections, coupled with annual source testing, product testing, ensure that Purely Sedona Artesian Spring Water complies with federal and state bottled water regulations.

Types of Drinking Water Offered by Sedona Bottled Water Company

Sedona Bottled Water Company offers the following types of drinking water products: Artesian Spring Water and Sparkling Artesian Spring Water.

Types of Water Sources Used by Sedona Bottled Water Company

Sedona Bottled Water Company uses a protected and registered Artesian Spring in Oak Creek Canyon in Sedona, Arizona.

Processing (Treatment) Steps for Artesian Spring Water Products

Water from a protected and registered Artesian Spring is filtered and polished with Granular Activated Carbon to remove impurities and particulate material. Absolute micron filtration, ozone and sub-micron filtration are used as disinfection steps for additional safety before bottling. The naturally occurring minerals are not removed from our Artesian Spring Water during processing.

Processing (Treatment) Steps for Sparkling Artesian Spring Water Products

Water from a protected and registered Artesian Spring is filtered and polished with Granular Activated Carbon to remove impurities and particulate material. Absolute micron and sub-micron filtration are used as disinfection steps for additional safety before bottling. Our water is then carbonated and bottled. The naturally occurring minerals are not removed from our Artesian Spring Water during processing.
Statements Required Under California Law

The following terms and statements, in most instances, are not applicable to bottled water and may be in conflict with federal bottled water regulations, but are required by California law (SB 220): **Statement of quality** – The standard of quality for bottled water is the highest level of a contaminant that is allowed in a container of bottled water, as established by the Food and Drug Administration and the California Department of Public Health. The standards can be no less protective of public health or less stringent than the standards for public drinking water. **Maximum contaminant level (MCL)** - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the Public health goal as is economically and technologically feasible. **Public health goals (PHGs)** are the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. **Primary drinking water standards** are the MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. For information on FDA recalls contact: http://www.fda.gov/opacom/7alerts.html.

"Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Food and Drug Administration, Food and Cosmetic Hotline (1-888-723-3363). Some persons may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, including, but not limited to, persons with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These persons should seek advice about drinking water from their health care providers. The United States Environmental Protection Agency and the Centers for Disease Control and Prevention guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791)."

"Some sources of bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water naturally travels over the surface of the land or through the ground, it can pick up naturally occurring substances as well as substances that are present due to animal and human activity. Substances that may be present in the source water can include any of the following: (1) Inorganic substances, including, but not limited to, salts and metals, that can be naturally occurring or result from farming, urban storm water runoff, industrial or domestic wastewater discharges, or oil and gas production. (2) Pesticides and herbicides that may come from a variety of sources, including, but not limited to, agriculture, urban storm water runoff, and residential uses. (3) Organic substances that are byproducts of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems. (4) Microbial organisms that may come from wildlife, agricultural livestock operations, sewage treatment plants, and septic systems. (5) Substances with radioactive properties that can be naturally occurring or be the result of oil and gas production and mining activities."
In order to ensure that bottled water is safe to drink, the United States Food and Drug Administration and the [California] State Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by bottled water companies.

Water Quality Data
Attached is a copy of our water quality analysis as conducted by certified labs. The analysis includes bottled drinking water quality test results for substances including inorganics, organics, and radiological as well as physical parameters.

Sedona Bottled Water Company - Typical Analysis

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Purely Sedona Artesian Spring Water</th>
<th>FDA Standard of Quality (SOQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemicals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ND</td>
<td>0.006</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Barium</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>Bromate</td>
<td>ND</td>
<td>0.010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Chlorine, Free</td>
<td>ND</td>
<td>4.0</td>
</tr>
<tr>
<td>Chloramine</td>
<td>ND</td>
<td>4.0</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>ND</td>
<td>0.8</td>
</tr>
<tr>
<td>Chlorite</td>
<td>ND</td>
<td>1.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Cyanide</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ND</td>
<td>1.3</td>
</tr>
<tr>
<td>Lead</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Mercury</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Nickel</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Nitrate-N</td>
<td>ND-0.11</td>
<td>10</td>
</tr>
<tr>
<td>Nitrite-N</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Total Nitrate +Nitrite</td>
<td>ND-0.11</td>
<td>10</td>
</tr>
<tr>
<td>Selenium</td>
<td>ND</td>
<td>0.05</td>
</tr>
<tr>
<td>Thallium</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Secondary Inorganic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Chloride</td>
<td>2.4</td>
<td>250</td>
</tr>
<tr>
<td>Copper</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Constituent</td>
<td>Purely Sedona Artesian Spring Water</td>
<td>FDA Standard of Quality (SOQ)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Iron</td>
<td>ND</td>
<td>0.3</td>
</tr>
<tr>
<td>Manganese</td>
<td>ND</td>
<td>0.05</td>
</tr>
<tr>
<td>Silver</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ND</td>
<td>250</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>160</td>
<td>500</td>
</tr>
<tr>
<td>Zinc</td>
<td>ND</td>
<td>5</td>
</tr>
</tbody>
</table>

Volatile Organic Chemicals (VOCs)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Purely Sedona Artesian Spring Water</th>
<th>FDA Standard of Quality (SOQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>1,1,2- Trichloroethane</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>0.007</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.07</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>0.07</td>
</tr>
<tr>
<td>Trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.7</td>
</tr>
<tr>
<td>Methylene chloride (Dichloromethane)</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Monochlorobenzene</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>o-Dichlorobenzene</td>
<td>ND</td>
<td>0.6</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>ND</td>
<td>0.075</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>ND</td>
<td>0.06</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>ND</td>
<td>0.005</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Xylenes (total)</td>
<td>ND</td>
<td>10</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>0.0036</td>
<td>No SOQ for individual trihalomethane contaminants. The sum of the 4 THMs is regulated as total trihalomethanes (TTHMs)</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>0.002</td>
<td>No SOQ for individual trihalomethane contaminants. The sum of the 4 THMs is regulated as total trihalomethanes (TTHMs)</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.0024</td>
<td>No SOQ for individual trihalomethane contaminants. The sum of the 4 THMs is regulated as total trihalomethanes (TTHMs)</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>No SOQ for individual trihalomethane contaminants. The sum of the 4 THMs is regulated as total trihalomethanes (TTHMs)</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>0.008</td>
<td>0.08</td>
</tr>
<tr>
<td>Semivolatile Organic Chemicals (SOCs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>0.0002</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)adipate</td>
<td>ND</td>
<td>4</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)phthalate</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>ND</td>
<td>6</td>
</tr>
<tr>
<td>Total Recoverable Phenolics</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic Organic Chemicals (SOCs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>0.05</td>
</tr>
<tr>
<td>2,4-D (Dichlorophenoxy acetic acid)</td>
<td>ND</td>
<td>0.07</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Aldicarb sulfone</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Aldicarb sulfoxide</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Atrazine</td>
<td>ND</td>
<td>0.003</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>ND</td>
<td>0.04</td>
</tr>
<tr>
<td>Chlor dane</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Dibromochloropropane (DBCP)</td>
<td>ND</td>
<td>0.0002</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>0.007</td>
</tr>
<tr>
<td>Dioxin</td>
<td>ND</td>
<td>3X10^-8</td>
</tr>
<tr>
<td>Diquat</td>
<td>ND</td>
<td>0.02</td>
</tr>
<tr>
<td>Endothall</td>
<td>ND</td>
<td>0.1</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>Ethylene dibromide</td>
<td>ND</td>
<td>0.00005</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>ND</td>
<td>0.7</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>0.0004</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>0.0002</td>
</tr>
<tr>
<td>Lindane</td>
<td>ND</td>
<td>0.0002</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>0.04</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>ND</td>
<td>0.001</td>
</tr>
<tr>
<td>Picloram</td>
<td>ND</td>
<td>0.5</td>
</tr>
<tr>
<td>Polychlorinated biphenyls (PCBs)</td>
<td>ND</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Simazine</td>
<td>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Additional Regulated Contaminants

<table>
<thead>
<tr>
<th></th>
<th>ND</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl tertiary butyl ether (MTBE)</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>NA</td>
</tr>
</tbody>
</table>

Radiological Contaminants

<table>
<thead>
<tr>
<th></th>
<th>< 0.3</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Particle Radioactivity (pCi/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Beta Particle and Photon Radioactivity (pCi/L)</td>
<td>< 0.3</td>
<td>50</td>
</tr>
<tr>
<td>Radium 226/228 (combined) (pCi/L)</td>
<td>< 1</td>
<td>5</td>
</tr>
<tr>
<td>Uranium</td>
<td>ND</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Water Properties

<table>
<thead>
<tr>
<th></th>
<th>ND</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color (UNITS)</td>
<td>ND</td>
<td>15</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>ND</td>
<td>5</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>NA</td>
</tr>
<tr>
<td>Odor (TON)</td>
<td>ND</td>
<td>3</td>
</tr>
<tr>
<td>Conductivity (umhos)</td>
<td>260</td>
<td>NA</td>
</tr>
</tbody>
</table>

Legend

- **ND** = Not Detected, absent or present at less than testing method detection level
- **mg/L** = milligram (1/1,000 of a gram) per liter = ppm = parts per million
- **≤** = compliance w/ less than or equal to the FDA Standard of Quality (allowable level)
- **pCi/L** = picoCuries per liter
- **NTU** = turbidity unit of measurement
- **umhos** = Micromhos, the reciprocal of microhms
- **TDS** = Total Dissolved Solids (Minerals)